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The exact solution is obtained for the nonstationary problem of plane longitudi~
nal and transverse elastic wave diffraction by a wedge with the following bound-
ary conditions: normal stresses and tangential displacements are zero.

The problem of elastic wave diffraction by a rigid wedge imbedded in an in-
finite elastic medium without friction has been considered in [1]. Obtaining a
closed solution in this case is possible because the boundary conditions for the
longitudinal and transverse potentials are separated (until conditions on the edge
are taken into account). It has been clarified [2] that in investigating the inter-
action between elastic waves and plane boundaries the boundary conditions for
the potentials are still separated even when the normal stresses and tangential
displacements are given on the boundary.

1, Formulation of the problem, An elastic medium with propagationvelo-
cities a and p for the longitudinal and transverse waves fills the exterior of a wedge,on
whose boundaries the conditions that the radial displacement and shear stress vanish,are
given.

The connection between the radial u, and tangential u, displacements and the longi-
tudinal ¢ and transverse ¥ potentials is given by the relationships
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The boundary conditions for the potentials on the wedge faces are the following:

¢=0, /B =0 foo 0=0,7 (y="kln, k<1)

where v is the external angle of the wedge.

The conditions on the edge are taken in the same form as in (1], namely, it is required
that the displacements be bounded and that the stresses and strains grow more slowly than
r-1, It is assumed that the incident wave potential is described by the Heaviside step
function.

The wave fronts being formed upon incidence of a longitudinal wave on the wedge are
shown in Fig. 1 for the cases (a) when no shadow domain is formed (the angle of incidence
is B> v — 8n/2) and (b) when a shadow region is formed (B <y — 3n/2). The lines
abc and egh are the fronts of the diffracted longitudinal and transverse waves. The co-
efficient of incident longitudinal wave reflection is =1 and of the transverse wave is 1.

2. Longitudinal wave incidence. In the interior part of the region bounded
by the wedge faces oa and oc as well as the diffracted longitudinal wave front abe, we
introduce the independent variables &, = r;~ — ¥'r;-# — 1 and 6, where r, = r (at)~L.
Then the wave equation for the longitudinal potential goes over intothe Laplace equation.
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The domain under consideration is mapped conformally into an upper semicircle of

the y; plane by means of the following transformation:
n=~e" (Ri=ek, v==;o)

The analytic function W, (y;) = @a (v1) 4 #f1 (1) of the complex variable y, is intro-
duced in this region (9, (y,) is the longitudinal potential corresponding to the acoustic
solution), By using the symmetry principle, the function W, (y,) can be continued ana-
lytically into the lower part of the unit circle.

Therefore, the problem is formulated as follows: find the real part of the function
Wa (y1) under the following conditions on the surface of the unit circle (R, = 1):

0, —vm<<v<v, w<v<an—m
ReWa"':{ i, nvve
-1, m"—'\7$<'\’<21"—-V1,
(v = KBy, vy =kby 0, =n/2—f)

— 2 — B, —3n/2
ERFAPS AL o4tk 47
The solution of the Dirichlet problem for a circle is known [3].

However, the acoustic solution obtained will not generally satisfy the condition on the
edge, In order to satisfy the condition on the edge, let us represent the longitudinal po-
tential as the sum of two functions, The first function describes the acoustic solution.
The second is selected so that it would satisfy the Laplace equation, the zero boundary
conditions on the real axis of the y, plane, and would permit compliance with the con-
dition on the edge.

Therefore, the expression for the longitudinal potential can be written as

@ (ry, 0) = @q (r1, 6) + Reliay (y1 + ™)) (2.1

where .q, is a still unknown coefficient, which should be determined from the condition

Fig. 1

on the edge. The solution for the transverse potential is sought analogously.

The domain bounded by the wedge faces oe and ok (Fig. 1) as well as the diffracted
transverse wave front egh is mapped into the upper semicircle of the y, plane by using
the transformation

ys=Re® Ri= (i';1 - I/ r;’ — 1)", ra=r (bt)1
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The function W, (ys) = ¥ (ya) + ifs (¥2) is introduced. This function is found so that
it would satisfy the Laplace equation, the conditions
Re Wy = 0 for Ry=1,0v<n
Re0W2/69=O for v=0,v=ox
and would permit compliance with the boundary conditions on the edge. Then it is pos-
sible to write Wy (y2) = ag (y2— y37Y) (2.2)
where g, is a still unknown coefficient,

Using (2. 1) and (2. 2), we write the expressions for the displacements in the domain
bounded by the wedge faces and the diffracted transverse wave front as

uy = 2k (mr VI—=r2)1 [Re (iQ) — Yaayn (Ry + Ry™Y) sinv] — aghr~! (Re— (2.3)
Re-1) sin v

ug =2k nir [Re (—Q) — Yamst (R — Ry})cos v] —
agkr-1(1 — rq?)~"* (R34 Rg~1)cos v

Q = y1 [(cos va — y1) (1 + ¥s® — 241 c03 va)~1 —
(cos v1—y1) (1 4112 — 2y cos V1) 1]

Performing the asymptotic expansions for (2.3) as r — 0 and using the conditions of
boundedness of the displacements on the wedge edge, we obtain the following dependen-
ces for the coefficients a, and ay:

ay = 201 [1 + (ab~1)2K]=1 (cos v; — cosvy), a5 = ay (ab~))¥ (2.4)

Taking account of (2, 4), the expressions for the potentials are written as
@ = g (r, 0, 8) — 4 [1 + (ab~1)2%]- (R, — R,™Y) sin stk sin k (/2 + B) sin kO
P = 4n1[1 + (ab~1)2¥]"1 (ab~1)k (R, — Ry™7) sin nk sin k (s / 2 + B) cos k6

In contrast to the case of longitudinal wave incidence on a rigid wedge imbedded with-
out friction in an elastic medium, no such value of the angle of incidence exists for which
the solution would agree with the acoustic solution in the case under consideration. Ex-
actly as in [1], it can be seen that the elastic terms and the acoustic terms have the iden-
tical intensity both near the wedge edge and near the diffracted wave fronts, The acous-
tic and longitudinal components of the radial displacement are of the order of (™% —
1)~ in the neighborhood of the diffracted longitudinal wave, and the tangential displa~
cement components are of the order of unity,

Near the transverse wave front both the radial displacement components are of the
order of one, and the tangential displacments are of the order of (r,™! — 1)7"%

3, Transverse wave incidence, In this case the solution can be obtained
by the same method as in Sect., 2, For example, let us present the expressions for the po-
tentials (no shadow region)

¢ = 4n 1 {1 4 (ab~1)2*]-2 (ab 1)k (R, — R,™Y) sin stk cos k (m / 2 4~ PB) sin k@

Y= (r, 0, t) — 4n~1[1 4 (ba=1)?*]-1 (R, — R,~) sin nk cos k (n/2 + B) cos kO
Here ¢q (r, 0, t) is the solution of the acoustic problem in the domain bounded by the
wedge faces (on which ay,/ 89 = 0) and the diffracted transverse wave front. The solu-
tion agrees with the acoustic solution when the incident ray is directed along the wedge
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bisectrix. As in Sect, 2, the additional elastic terms are of the same order as the acous-
tic terms.

Let us note that as the shear modulus of the medium surrounding the wedge tends to
zero, the solution of the problem under consideration goes over into the solution of the
problem of acoustic wave diffraction by a hollow wedge.

The author is grateful to N, V, Zvolinskii for attention to the research,
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