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The exac t  solution is obtained for the nonstationary problem of plane longitudi-  
nal  and transverse e las t ic  wave diffraction by a wedge with the following bound- 
ary condit ions:  normal stresses and tangent ia l  displacements  are zero. 

The problem of e las t ic  wave diffraction by a rigid wedge imbedded in an in-  
finite e las t ic  medium without friction has been considered in [1].  Obtaining a 
closed solution in this case is possible because the boundary conditions for the 
longi tudinal  and transverse potentials  are separated (until  conditions on the edge 
are taken into account).  It has been c lar i f ied [2] that in invest igat ing the inter-  
act ion between elas t ic  waves and plane boundaries the boundary conditions for 
the potentials  are st i l l  separated even when the normal stresses and tangent ia l  
d isplacements  are given on the boundary, 

F o r m u l a t I o n o f t h • p r o b 1 e m .  An elas t ic  medium with propagation ve lo-  
a and b for the longitudinal  and transverse waves fills the exterior  of a wedge,on 
boundaries the conditions that  the radial  d isp lacement  and shear stress vanish,are 

The connect ion between the radia l  Ur and tangent ia l  u o displacements  and the longi-  
tudinal  ¢p and transverse ~ potentials  is given by the relationships 

U r = " ~  + r aO ' uo ="7" ~ - -  Or 

The boundary conditions for the potentials  on the wedge faces are the following: 

= 0 ,  ~ / ~ = 0  for 0 = 0 , ~  ( y = k - ~ , k < t )  

where ¥ is the externa l  angle of the wedge. 
The conditions on the edge are taken in the same form as in [1], namely ,  i t  is required 

that  the displacements  be bounded and that the stresses and strains grow more slowly than 
r-1. It is assumed that  the incident  wave potent ial  is described by the Heaviaide step 

function. 
The wave fronts being formed upon incidence of a longitudinal  wave on the wedge are 

shown in Fig. 1 for the cases (a) when no shadow domain is formed (the angle of inc idence  
is [3 > 7 - -  8~ / 2) and (b) when a shadow region is formed ([5 < 7 - -  8n / 2). The lines 
abe and egh are the fronts of the diffracted longitudinal  and transverse waves. The co-  
ef f ic ient  of incident  longi tudinal  wave ref lect ion is - 1  and of the transverse wave is 1. 

2 .  L o n s i t u d i n a l  w a v e  l n c l d e n c s ,  In the interior part of the region bounded 
by the wedge faces oa and oc a~ well  as the diffracted longitudinal  wave front abe, we 
introduce the independent  variables ~1 = r1-1 - -  ) / ' ~  and 0, where r 1 = r (at) -1. 
Then the wave equation for the longitudinal  potent ia l  goes over into the Laplace equation.  
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The domain under consideration is mapped conformaily into an upper semicircle of 
the Yl plane by means of the foUowing transformation: 

?/1 = R l e  Iv (R1 : el ~, V • k0) 

The analytic function Wa (Yx) = q~a (yl) + tfl (Yl) of the complex variable Yx is intro- 
duced in this region (~a (Y~) is the longitudinal potential corresponding to the acoustic 
solution). By using the symmetry principle, the function Wa (y~) can be continued ana- 
lyticaily into the lower part of the unit circle. 

Therefore, the problem is formulated as follows: find the real part of the function 
Wa (Yl) under the following conditions on the surface of the unit circle (RI = t): 

0, - - V l < ~ < v ~ ,  v s < ~ < 2 ~ - - ~  
ReWa= t ,  , a < v < ~  

- - I ,  2 ~ - - v z < v < 2 ~ - -  v~ 

(v1=k01,  v~=k02,  e l = a / 2 - - 8 )  

f2.~ - 3~ / 2 - 8, 8 >  ~, - 3rt / 2 

The solution of the Dirichlet problem for a circle is known [3]. 
However, the acoustic solution obtained will not generally satisfy the condition on the 

edge. In order to satisfy the condition on the edge, let us represent the longitudinal po- 
tential as the sum of two functions. The first function describes the acoustic solution. 
The second is selected so that it would satisfy the Laplace equation, the zero boundary 
conditions on the real axis of the //1 plane, and would permit compliance with the con- 
dition on the edge. 

Therefore, the expression for the longitudinal potential can be written as 

q~ (rl,  O) m. q~a (rl, O) A- Re [~a I (Yl "Jr- //1--1)] (2.  1) 

where .al is a stilt unknown coefficient, which should be determined from the condition 

\\. _ / /  

Fig. 1 

on the edge. The solution for the transverse potential is sought analogously. 
The domain bounded by the wedge faces oe and oh (Fig. I) as well as the diffracted 

transverse wave front egh is mapped into the upper semicircle of the ui plane by using 
the transformation 

(bt)-I ~ r 
~ j  



The function W2 (Ys) ---- ~ (Y2) q- l[~ (Y2) is introduced. This function is found so that 
i t  would satisfy the Laplace equation,  the conditions 

R e W s = O  for Rs-----i ,  O ~ v ~  

R e 0 W 2 / 0 0 =  0 for ~ =  O, v =  

and would permit  compl iance  with the boundary conditions on the edge.  Then it is pos- 

sible to write W2 (Y2) ---- a9 ( y 2 -  y2 -1) (2.2)  

where a~ is a stiU unknown coeff ic ient .  
Using (2 .1)  and (2 .2) ,  we write the expressions for the displacements  in the domain 

bounded by the wedge faces and the diffracted transverse wave front as 

Ur ---- 2k (ur ] / t  - -  r12) -1 [Re (iQ) - -  1/2aln (R 1 -F tt1-1) sinv] - -  a2kr -1 (R~-- (2.3)  

Re -1) sin v 

u 0 = 2k / ~r [Re (--Q) - -  I/~at~ (R1 - -  Rt-, 1) cos v] - -  

a~kr-l(i - -  ra~) -v" (R2 -1- R~-I) cos v 

Q --- yl [(cos v~ - -  yl) (t Jr  yl  ~ - -  2yl cos v~) -1 - -  
(cos vl - -  yl) (t + yl ~ - -  2yx cos v~) -11 

Performing the asymptot ic  expansions for (2.3)  as r ~ 0 and using the conditions of 
boundedrm~ of the displacements  on the wedge edge,  we obtain the foUowing dependen-  
ces for the coeff icients  a~ and a2: 

al - -  2n -1 [t @ (ab-l) 2k]-1 (cos v 1 - -  cos va), a~ ~-- a 1 (ab-1) k (2.4)  

Taking account of (2 .4) ,  the expressions for the  potentials  are written as 

(P = (Da (r, 0, t) - -  4g -1 [t -[- (ab-1)2k] -1 (R 1 - -  R1 -I) sin nk sin k (n / 2 ~ ~) sin k0 

~p = 4n -1 [t -{- (ab-l)2k] -1 (ab-1) ~ (R2 --  R2 -1) sin nk sin k (n / 2 d- [5) cos k0 

In contrast to the case of longi tudinal  wave incidence on a rigid wedge imbedded with- 
out friction in an e las t ic  medium,  no such value of the angle of inc idence  exists for which 
the solution would agree with the acoustic solution in the case under consideration. Ex- 
act ly  as in [1], i t  can be seen that the e las t ic  terms and the acoustic terms have the iden-  
t i ca l  intensity both near the wedge edge and near the diffracted wave fronts. The acous- 

t ic  and longitudinal  components of the radia l  d isp lacement  are of the order of (h -~ - -  
1) -1/' in the neighborhood of the diffracted longitudinal  wave, and the tangent ia l  displa-  

cemen t  components are of the order of unity. 
Near the transverse wave front both the radia l  d i sp lacement  components are of the 

order of  one, and the tangent ia l  displacments  are of  the order of (r1-1 - -  1) -'r~. 

$ .  T t & l l s v e r l e  w & v e  i n c i d e n c e .  In this case the solution can be obtained 
by the same method as in Sect.  2. For example ,  le t  us present the expressions for the po- 

tent ia ls  (no shadow region) 

q) ---- 4u -~ [1 -[- (ab-1)~] -a (ab-~) 1~ (B 1 - -  B1 -~) sin xk cos k (~ / 2 q- ~) sin k0 

= @a (r, 0, t) - -  4z~ -1 [i -{- (ba- l f~]  -~ (R~ - -  Ra -1) sin nk cos k (n/2 ~- [~) cos k0 

Here $a (r, 0, t) is the solution of  the acoustic problem in the domain bounded by the 
wedge faces (on which O@a/00 ---- 0) and the diffracted transverse wave front. The solu- 
tion agrees with the acoustic solution when the incident  ray is d i rected along the wedge 
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bisectrix. As in Sect. 2, the additional elastic terms are of the same order as the acous- 

tic terms. 

Let us note that as the shear modulus of the medium surrounding the wedge tends to 

zero, the solution of the problem under consideration goes over into the solution of the 

problem of acoustic wave diffraction by a hollow wedge. 

The author is grateful to N. V. Zvolinskii for attention to the research. 
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